时间:2013年3月18日下午3:00
地点: 下沙校区教学D楼104(理学院党员之家)
报告摘要:
Using a combination of classical ideas, some going back to Sommerfeld a hundred years ago, and more modern techniques, we address a question raised by Dos Santos Ferreira, Kenig and Salo about what are the optimal regions ${\mathcal R}\subset {\mathbb C}$ for which one can have uniform Lebesgue-estimates for solutions of the forced membrane equation, $$(\Delta+\zeta)u=f,$$ as $\zeta$ ranges over ${\mathcal R}$. We confirm, as Sommerfeld reasoned, that properties of the solution $u$ should depend on properties of solutions of the stationary equations $(\Delta+\lambda)u=0$ (the eigenfunctions) and properties of the spectrum (the eigenvalues $-\lambda$ of the Laplacian).
This is joint work with J. Bourgain, P. Shao and X. Yao.
专家简介:
Christopher D. Sogge是美国约翰·霍普金斯大学(Johns Hopkins university)数学系J. J. Sylvester教授,国际数学家大会45分钟报告人,美国总统奖(Presidential Young Investigator Award)获得者,古根海姆奖(Guggenheim Award)获得者,《美国数学杂志》(American Journal of Mathematics)的主编,著名的调和分析和非线性波动方程方面的专家。